
La Salle 9 Rue Notre Dame des	BTS Systèmes Numériques	Session 2020
7 douleurs		
Avignon		
© 04 90 14 56 56		
™ vaira@lasalle84.org		
™ beaumont@lasalle84.org		

e-stock

Armoire de stockage intelligent

Partenaire professionnel :	Étudiants chargés du projet :	Professeurs ou Tuteurs responsables :
Aucun	⊠ EC □ IR	
	□ EC ⊠ IR	BEAUMONT Jerôme (EC), VAIRA Thierry (IR) et
	□ EC 🛭 IR	MAROUF Abdel (SPC)

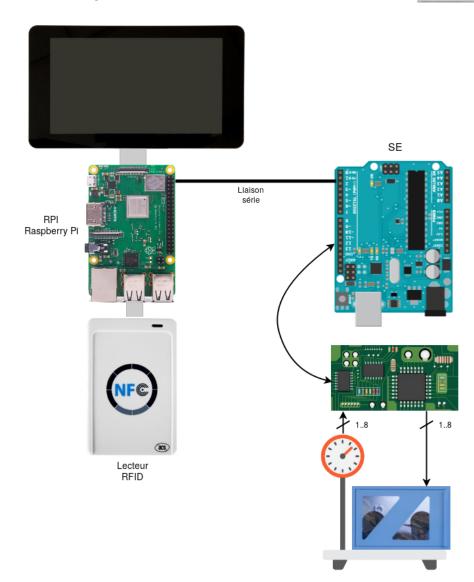
Reprise d'un projet : Oui / Non

Présentation générale du système supportant le projet

Il s'agit de réaliser un système de gestion de stock automatisé qui permettra :

- de contrôler et gérer l'utilisation de produits stockés dans une armoire sensible
- d'assurer la traçabilité de l'attribution du matériel et des consommables stockés
- de sécuriser l'accès par un contrôle d'accès par badge RFID

Une armoire sera composée de 8 casiers maximum. Chaque casier pourra être équipé :


- d'une gâche électrique afin d'assurer son ouverture/fermeture
- d'une balance pour assurer le comptage automatique des articles

Le comptage automatique de la quantité est déterminé en fonction du poids unitaire et du poids mesuré sur la balance.

Si les casiers ne sont pas munis individuellement :

- de gâche électrique, seule l'armoire en disposera pour accéder à l'ensemble des rangements.
- de balance, le comptage des articles se fera manuellement en indiquant la quantité des articles. Un lecteur code-barres pourra être utilisé pour identifier les articles.

Un lecteur de badge RFID est intégré à chaque armoire pour contrôler l'accès. L'exploitation de l'armoire **e-stock** est possible à partir de l'écran tactile intégré.

Analyse de l'existant

L'entreprise ATV Systèmes (www.atv-systemes.com) fabrique des systèmes de stockage intelligent et connecté **GoStock** qui proposent un accès sécurisé et un comptage automatique de son contenu.

GoStock se présente sous 2 modèles distincts :

- GoStock Access (version à portes coulissantes) permettant à accès complet à l'ensemble du contenu. Les produits sont distribués par GoStock et sortent définitivement des stocks (dans le cas de produits consommables).
- GoStock Lockers (version à portes casiers à ouvertures indépendantes commandées individuellement). Les produits sont distribués par GoStock mais ils doivent être restitués après leur utilisation.

Améliorations possibles : accès par terminal mobile, consultation des états du stock plus visuel, ...

Expression du besoin

Les enseignants du Lycée technique et professionnel interviennent dans des ateliers dans lesquels de nombreux équipements sont utilisés. Ils souhaitent pouvoir disposer d'armoires afin :

- de rendre accessible le matériel dans un espace sécurisé
- de faciliter un inventaire des stocks avant de passer une commande
- d'assurer un suivi des activités (Qui a effectué l'activité ? Quand ? En combien de temps ?)
- de rendre plus autonome et de responsabiliser un groupe d'élève lors d'une activité
- de se libérer de la gestion et du rangement

Les armoires ne seront pas utilisées uniquement pour du stockage de matériel mais aussi comme une ressource pédagogique.

Le développement de l'application doit répondre aux exigences des utilisateurs :

- simplicité d'utilisation,
- correspondre aux contraintes définies,
- réalisable dans un délai de 200 heures (IR) et 170 heures (EC).

Description structurelle du système

Les acteurs humains de ce système sont :

Utilisateur	Il peut prendre et rendre des articles. Il peut visualiser ses mouvements et le stock.
Gestionnaire ¹	Il peut en plus réapprovisionner le stock, réorganiser le rangement, éditer des articles et gérer les utilisateurs.
Administrateur ²	Il possède un accès total et peut donc configurer l'ensemble du système et réaliser une maintenance de premier niveau.

Chaque acteur devra tout d'abord s'authentifier soit avec un identifiant et un mot de passe soit avec un badge sans contact RFID.

On distinguera deux type d'articles :

- les « consommables » qui sortent définitivement du stock
- les « empruntables » qui peuvent être restitués après leur utilisation

Un article sera caractérisé par : un nom, un code, une désignation puis,

- un **type** : « Équipement » ou « Consommable »
- un comptage:
 - o Aucun : le prélèvement est libre, aucun comptage effectué
 - Automatique : le décompte est fait automatiquement à condition que l'article soit placé sur un emplacement muni d'un système de comptage
 - Code barre : l'article doit être muni d'un code barre et l'opérateur doit, à chaque mouvement, passer le code barre devant le lecteur code barre, pour l'enregistrer et donner la quantité sortie ou entrée.
- un **stock** : la quantité du stock. Pour les articles qui sont configurés en comptage automatique, la quantité est calculée en fonction du poids unitaire et du poids mesuré sur la balance.
- une unité: l'unité du stock (mètres, pièces, pourcentage, g (grammes), kg (kilogrammes)).

Exemple de comptage :

- les composants : on pèse à la pièce. Après avoir fait la tare du conteneur vide, on place *n* composants à l'intérieur. On effectue la pesée en précisant *n* pièces. On peut ensuite remplir le conteneur à plein. Exemple de composants : bornes, contacteurs, boutons poussoirs, etc...
- le fil : on pèse au mètre. Après avoir fait la tare du conteneur vide, on met *n* bobines à l'intérieur. On effectue la pesée en précisant *x* mètres. Dans cette configuration, chaque prélèvement sera exprimé en mètres de fil.
- les appareils : on pèse au pourcentage. Après avoir fait la tare du conteneur vide, on dépose l'appareil avec l'ensemble de ses accessoires si besoin. On effectue la pesée en précisant 100%. Dans cette configuration, si le retour n'est pas à 100%, c'est qu'il manque quelque chose. Il n'est pas nécessaire de connaître le poids d'une boite pour vérifier que tout soit revenu.

¹ Les cas d'utilisations pour l'acteur Gestionnaire ne seront pas réalisés dans ce projet.

² Les cas d'utilisations pour l'acteur Administrateur ne seront pas réalisés dans ce projet.

Chaque utilisateur est défini par :

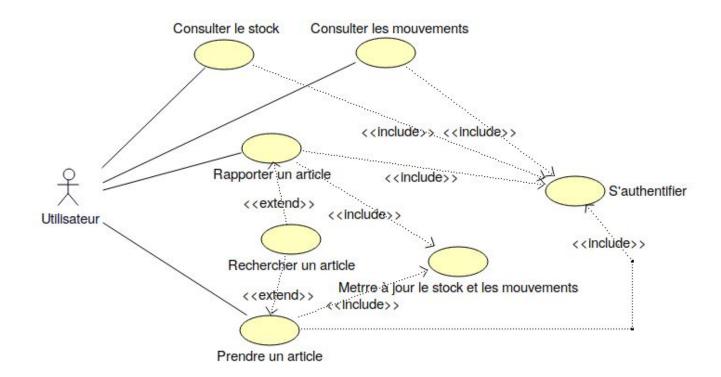

- un **nom** et un **prénom**
- un **profil**: Utilisateur, Gestionnaire ou Administrateur
- un identifiant : l'identifiant que l'utilisateur devra renseigner pour s'authentifier
- un **mot de passe** : pour s'authentifier
- un **badge** : le badge RFID pour s'authentifier
- une **date de validité** : une date limite d'accès pour chaque utilisateur. Passée cette date, l'utilisateur ne pourra plus accéder même avec son badge.
- un groupe : un groupe défini les droits d'accès aux zones de l'armoire. Chaque groupe peut être configuré pour avoir accès à différentes zones. Chaque zone est indépendante. Chaque groupe est indépendant. Un utilisateur n'appartient qu'à un seul groupe à la fois.
- une **adresse email** : peut être définie pour chaque utilisateur. Les alertes et les stocks seront envoyés si besoin à cette adresse.

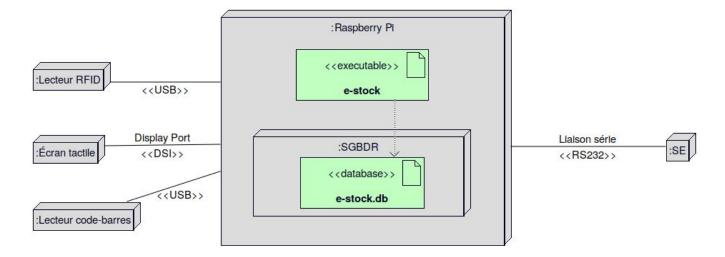
Diagramme des cas d'utilisation pour l'acteur Utilisateur

L'utilisateur doit simplement s'authentifier, puis il pourra prendre des consommables ou emprunter pour une durée limitée des équipements. Pour faciliter l'accès aux ressources, il est possible de rechercher un article. Il pourra alors visualiser dans quel casier se trouve l'article et sa quantité.

En accédant à la liste des articles disponibles, il choisira l'emplacement à ouvrir pour prendre un consommable ou un équipement. Puis il refermera la porte.

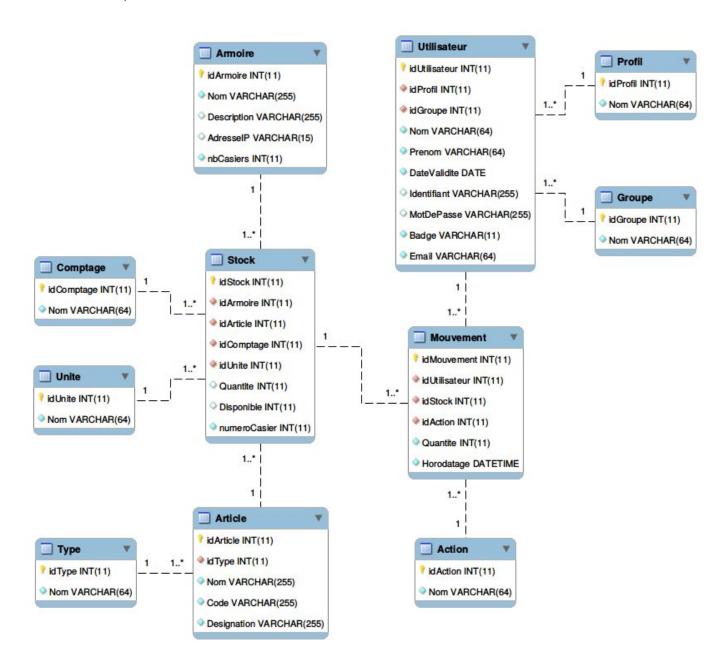
Dans les casiers à comptage automatique, l'utilisateur n'a pas à déclarer quel article il prend ni quelle quantité. La détection du type et de la quantité est automatique. Si ce n'est pas le cas, l'utilisateur devra scanner le produit avec le lecteur codes barres et indiquer la quantité empruntée.

À chaque opération, le système enregistre le mouvement et met à jour les stocks.


Chaque mouvement d'un utilisateur est enregistré avec la date et l'heure, le nom, le code et le type de l'article, l'action (entrée ou sortie) et la quantité. L'utilisateur peut consulter l'ensemble de ses mouvements. Pour un équipement, il est donc possible de voir l'emprunteur.

Dans « Consulter le stock », on peut visualiser les articles qui sont stockés dans les armoires et leurs quantités.

Diagramme de déploiement (partiel)


L'armoire sera équipée :

- d'un nano ordinateur embarqué Raspberry Pi 3 (RPI);
- d'un écran tactile 7 pouces ;
- d'un lecteur RFID (USB);
- d'un lecteur code-barres (USB);
- d'une base de données relationnelles (SGBDR);
- d'un système embarqué (SE) relié à la RPI via une liaison série ;

Modélisation de la base de données

Actuellement, la structure de la base de données est la suivante :

Ce diagramme ne modélise pas :

- La gestion de l'accès aux casiers pour les groupes
- La configuration du système

Inventaire des matériels et outils logiciels à mettre en œuvre par le candidat

Les ressources matérielles

Désignation	Caractéristiques techniques	Acquisition	Existant
SE	Système embarqué		Х
CARTE INTERFACE	Carte de mesures de poids et d'ouverture/fermeture de chaque casier	à réaliser	
RPI	Nano-ordinateur Raspberry Pi modèle 3B ou 4 (configuration minimale 1,2 GHz, 1GO de RAM et carte SD 16GO avec Raspbian OS)		X
MINI_ECRAN	Écran tactile 800x480 7" relié sur la RPI		X
OMNIKEY_5427_CK	Lecteur de badge Omnikey 5427 CK		Х
BADGE	Badge RFID 13,56 MHz		X
GÂCHE	Gâches électriques 12V/24V		Х
JAUGE	Jauges de contrainte		X

Les ressources logicielles

Désignation	Caractéristiques
Système d'exploitation de la RPI	GNU/Linux Raspbian
Système de gestion de bases de données relationnelles	À définir : MySQL, SQLite,
Atelier de génie logiciel (IR)	bouml version 7.x
Logiciel de gestion de versions (IR)	subversion (RiouxSVN)
Générateurs de documentation (IR)	Doxygen version 1.8
Environnement de développement (IR)	Qt Creator et Qt Designer
API GUI (IR)	Qt 5.x

en route et d'utilisation

du module

Énoncé des tâches à réaliser par les étudiants

BTS SN E62

Étudiant 1 Commander l'ouverture/fermeture des <u>Installation :</u> le système ⊠ EC □ IR embarqué et sa carte casiers électronique d'interface, les Détecter l'état ouvert/fermé des casiers gâches électriques, les jauges de contrainte Mesurer le poids du conteneur des casiers Mise en oeuvre: Communiquer avec la Raspberry Pi l'environnement de développement, la liaison Configuration: la liaison série, calibrage des pesées Réalisation: Les diagrammes SysML, Le code source et les schémas du module (carte électronique d'interface) **Documentation:** Le dossier technique et les documents relatifs au module, Un guide de mise

Étudiant 2 □ EC ⊠ IR	S'authentifier	<u>Installation :</u> la RPI
	Rechercher un article	<u>Mise en oeuvre :</u> lecteur RFID, la base de données
	Consulter le stock	Ki ib, ia base de dofffiees
	Communiquer avec le SE pour :	<u>Configuration :</u> la liaison série avec le SE
	 Commander l'ouverture/fermeture des casiers Afficher l'état ouvert/fermé des casiers 	Réalisation : Les diagrammes UML, L'IHM du module, Le code source de l'application
		Documentation: Le dossier technique et les documents relatifs au module, Un guide de mise en route et d'utilisation du module

Étudiant 3 □ EC ⊠ IR	Prendre et rapporter un article	Installation : la RPI
	Mettre à jour le stock et les mouvements Consulter les mouvements	Mise en oeuvre : le lecteur code-barres, la base de
	Communiquer avec le SE pour : - Récupérer les pesées des casiers - Assurer le comptage automatique	Configuration : la liaison série avec le SE Réalisation : Les diagrammes UML, L'IHM
		du module, Le code source de l'application Documentation: Le dossier technique et les
		documents relatifs au module, Un guide de mise en route et d'utilisation du module

Contrats de tâche

Tâches	Compétences	E1	E2	E3
Expression fonctionnelle du besoin				
Vérifier la pérennité et mettre à jour les informations	C2.1	×	×	×
Collecter des informations nécessaires à l'élaboration du cahier des charges préliminaire	C2.2	×	×	×
Formaliser le cahier des charges	C2.3 C2.4	×	×	×
S'approprier le cahier des charges	C3.1	×	×	×
Élaborer le cahier de recette	C3.5	×	×	×
Négocier et rechercher la validation du client	C2.4	×	×	×
Conception				
Traduire les éléments du cahier des charges sous la forme de modèles	C3.1 C3.3	×	×	×
Identifier les solutions existantes de l'entreprise	C3.1 C3.6	×	×	×
Identifier des solutions issues de l'innovation technologique	C3.1 C3.6	×	×	×
Rédiger le document de recette	C4.5	×	×	×
Prendre connaissance des fonctions associées au projet et définir les tâches	C2.4 C2.5	×	×	×
Définir et valider un planning (jalons de livrables)	C2.3 C2.4 C2.5	×	×	×
Assurer le suivi du planning et du budget	C2.1 C2.3 C2.4 C2.5	×	×	×
Réalisation				
Réaliser la conception détaillée du matériel et/ou du logiciel	C3.1 C3.3 C3.6	×	×	×
Produire un prototype logiciel et/ou matériel	C4.1 C4.2 C4.3 C4.4	×	×	×
Valider le prototype	C3.5 C4.5 C4.6	×	×	×
Documenter les dossiers techniques et de maintenance	C2.1 C4.7	×	×	×
Installer un système ou un service	C2.5	×	×	×
Exécuter et/ou planifier les tâches professionnelles de MCO	C2.5	×	×	×
Assurer la formation du client	C2.2 C2.5	×	×	×
Organiser le travail de l'équipe	C2.3 C2.4 C2.5	×	×	×
Animer une équipe	C2.1 C2.3 C2.5	×	×	×
Vérification des performances attendues		-		
Finaliser le cahier de recette	C3.1 C3.5 C4.5	×	×	×

Planification prévisionnelle

Date de début du projet	Semaine 6
Revue nº1	Semaine 7
Revue n°2	Semaine 13
Revue n°3	Semaine 19
Remise du dossier	Semaine 22 (à confirmer)
Soutenance finale	Semaine 25 (à confirmer)

Recette

Étudiant 1 (EC)

Production attendue:

☐ Une application informatique fonctionnelle;

☐ Un modèle UML complet de la partie à développer ;

`
☐ La commande d'une gâche est opérationnelle
La mesure d'un poids est fonctionnelle
Le tarage est possible
☐ La configuration de la liaison série est réalisée
☐ L'envoi et la réception de trames est opérationnelle
☐ La communication avec la RPI permet l'ouverture/fermeture d'un casier
Production attendue :
Un modèle SysML complet de la partie à développer ;
Un module électronique fonctionnelle ;
Une application informatique fonctionnelle;
☐ Le code source commenté de l'application ;
Les documentations et schémas associés au module.
Étudiant 2 (IR)
☐ La lecture d'un badge RFID est réalisée
☐ L'authentification avec ou sans badge est fonctionnelle
☐ Une autorisation ou une interdiction d'accès est signalée visuellement
☐ La consultation du stock est opérationnelle
☐ La communication avec le SE permet l'ouverture/fermeture d'un casier
☐ La recherche d'un article est possible
E La reciferera a arrandició est possible

BTS SN E62	Projet technique : e-stock	Aix-Marseille
	commenté de l'application ; ions associées au module.	
Étudiant 3 (IR)		

□ On peut prendre et restituer un article
□ Une lecture du code barre d'un article est opérationnelle
☐ La visualisation des mouvements est possible
☐ Le comptage automatique est fonctionnel
☐ La communication avec le SE permet la récupération des pesées
La gestion des balances est fonctionnelle (visualisation des pesées, tarage)
Production attendue :
Une application informatique fonctionnelle;
Un modèle UML complet de la partie à développer;
☐ Le code source commenté de l'application ;
Les documentations associées au module.

Avis de la commission

Les concepts et les outils mis en œuvre par le candidat (1-2-3) correspondent au niveau des exigences techniques attendu pour cette formation :

oui / à reprendre pour le candidat (1-2-3)

L'énoncé des tâches à réaliser par le candidat (1-2-3) est suffisamment complet et précis :

oui / à reprendre pour le candidat (1-2-3)

Les compétences requises pour la réalisation ou les tâches confiées au candidat (1-2-3) sont en adéquation avec les savoirs et savoir-faire exigés par le référentiel :

oui / à reprendre pour le candidat (1-2-3)

Le nombre d'étudiants est adapté aux tâches énumérées :

oui / trop / insuffisant

out, cop, mountain	
Commentaires	
Date:	Le président de la commission